Syntactic Posets
semantics/syntacticPoset.lean
namespace synPoset
variable {Form : Type}
semantics/syntacticPoset.lean
instance syn_preorder [Der : has_derives Form] : preorder Form :=
{ le := λ φ ψ, φ ⊢ ψ,
le_refl := Der.derive_refl,
le_trans := Der.derive_trans,
}
Inter-derivability equivalence relation
semantics/syntacticPoset.lean
def inter_der [Der : has_derives Form] : Form → Form → Prop :=
λ φ ψ, φ ⊢ ψ ∧ ψ ⊢ φ
infix `⊣⊢`:78 := inter_der
instance syn_setoid [Der : has_derives Form] : setoid Form :=
{ r := (⊣⊢),
iseqv :=
⟨ begin
assume φ, constructor,
apply Der.derive_refl, apply Der.derive_refl,
end,
begin
assume φ ψ h, cases h with φψ ψφ,
constructor, exact ψφ, exact φψ,
end,
begin
assume φ ψ θ j k, cases j with φψ ψφ,
cases k with ψθ θψ, constructor,
apply Der.derive_trans, exact φψ, exact ψθ,
apply Der.derive_trans, exact θψ, exact ψφ,
end
⟩
}
Quotienting by inter-derivability
semantics/syntacticPoset.lean
def Form_eq [Der : has_derives Form] : Type := @quot Form (⊣⊢)
def Form_eq_x (F : Type) [Der : has_derives F] : Type := @Form_eq F Der
notation (name:=Form_eq_explicit) F ` _eq`:max := Form_eq_x F
semantics/syntacticPoset.lean
def Form_eq_in [Der : has_derives Form] : Form → Form _eq := quot.mk (⊣⊢)
notation (name:=PPC_eq_in) ⦃φ⦄ := Form_eq_in φ
Lifting the derivability preorder
semantics/syntacticPoset.lean
lemma syn_preorder_liftable1 [Der : has_derives Form] :
∀ φ ψ θ : Form, ψ ⊣⊢ θ → (φ ⊢ ψ) = (φ ⊢ θ) :=
begin
assume φ ψ θ ψiffθ,
cases ψiffθ with ψθ θψ,
apply propext,
constructor,
assume φψ, apply Der.derive_trans, exact φψ, exact ψθ,
assume φθ, apply Der.derive_trans, exact φθ, exact θψ,
end
lemma syn_preorder_liftable2 [Der : has_derives Form] :
∀ φ ψ θ : Form, φ ⊣⊢ ψ → (φ ⊢ θ) = (ψ ⊢ θ) :=
begin
assume φ ψ θ φiffψ,
cases φiffψ with φψ ψφ,
apply propext,
constructor,
assume φθ, apply Der.derive_trans, exact ψφ, exact φθ,
assume ψθ, apply Der.derive_trans, exact φψ, exact ψθ,
end
def Form_eq_order [Der : has_derives Form] :
@Form_eq Form Der → @Form_eq Form Der → Prop :=
quot.lift₂ synPoset.syn_preorder.le syn_preorder_liftable1 syn_preorder_liftable2
Defining the syntactic poset
semantics/syntacticPoset.lean
instance syn_poset [Der : has_derives Form] : partial_order Form_eq :=
{ le := @Form_eq_order Form Der,
le_refl :=
begin
assume a,
induction a with φ,
dsimp[(≤),setoid.r,Form_eq_order],
apply Der.derive_refl,refl,
end,
le_trans :=
begin
assume a b c h j,
induction a with φ, induction b with ψ, induction c with θ,
dsimp[(≤),setoid.r,Form_eq_order],
dsimp[(≤)] at h, dsimp[(≤)] at j,
apply Der.derive_trans,
exact h, exact j,
refl, refl, refl,
end,
le_antisymm :=
begin
assume a b h j,
induction a with φ, induction b with ψ,
apply quotient.sound,
dsimp[(≈),setoid.r],dsimp[(≤)] at h, dsimp[(≤)] at j,
constructor, exact h, exact j, refl, refl,
end
}
semantics/syntacticPoset.lean
instance syn_eq_pre {Form : Type} [Der : has_derives Form] : preorder (Form _eq) :=
@partial_order.to_preorder (Form _eq) synPoset.syn_poset