The Deduction Typeclass
Hypotheses
mathlib: init/core.lean
class has_emptyc (α : Type u) :=
(emptyc : α)
mathlib: init/core.lean
class has_insert (α : out_param (Type u)) (γ : Type v) :=
(insert : α → γ → γ)
deduction/deduction.lean
class has_Hyp (Form : Type) :=
(Hyp : Type)
[emptyHyp : has_emptyc Hyp]
[insertHyp : has_insert Form Hyp]
Singleton hypotheses
has_singleton
Documentation | is_lawful_singleton
Documentation
mathlib: init/core.lean
class has_singleton (α : out_param (Type u)) (β : Type v) :=
(singleton : α → β)
class is_lawful_singleton (α : Type u) (β : Type v) [has_emptyc β] [has_insert α β] [has_singleton α β] : Prop :=
(insert_emptyc_eq : ∀ (x : α), (insert x ∅ : β) = {x})
deduction/deduction.lean
instance singleHyp {Form : Type} [hasHyp : has_Hyp Form] : has_singleton Form hasHyp.Hyp :=
{singleton := λ φ, hasHyp.insertHyp.insert φ hasHyp.emptyHyp.emptyc}
instance lawfulSingleHyp {Form : Type} [hasHyp : has_Hyp Form] :
@is_lawful_singleton Form (has_Hyp.Hyp Form) hasHyp.emptyHyp hasHyp.insertHyp deduction_basic.singleHyp :=
{ insert_emptyc_eq := begin assume φ, refl end }
Deduction
has_derives
deduction/deduction.lean
class has_derives (Form : Type) extends has_Hyp Form :=
(derives : Hyp → Form → Prop)
(derive_Trans : ∀ {Φ : Hyp} (ψ) {θ : Form}, derives Φ ψ → derives {ψ} θ → derives Φ θ)
deduction/deduction.lean
def der {Form : Type} [Der : has_derives Form] : Form → Form → Prop :=
λ φ ψ, has_derives.derives {φ} ψ
infix `⊢`:60 := der
deduction/deduction.lean
lemma derive_trans {Form : Type} [Der : has_derives Form] :
∀ {φ : Form} (ψ) {θ}, (φ ⊢ ψ) → (ψ ⊢ θ) → (φ ⊢ θ) :=
begin
assume φ,
apply Der.derive_Trans,
end
has_struct_derives
mathlib: init/core.lean
class has_mem (α : out_param (Type u)) (γ : Type v) :=
(mem : α → γ → Prop)
deduction/deduction.lean
class has_struct_derives (Form : Type) extends has_derives Form :=
[memHyp : has_mem Form Hyp]
(inInsert : ∀ {φ : Form} {Φ : Hyp}, φ ∈ insert φ Φ)
(hyp : ∀ {Φ} {φ}, (φ ∈ Φ) → derives Φ φ)
(weak1 : ∀ {Φ} {φ} (ψ), derives Φ φ → derives (insert ψ Φ) φ)
deduction/deduction.lean
lemma derive_refl {Form : Type} [Der : has_struct_derives Form] :
∀ φ : Form, φ ⊢ φ :=
begin
assume φ,
apply Der.hyp,
apply Der.inInsert,
end