Positive Propositional Calculus
PPC Definition
deduction/PPC_natDeduct.lean
namespace PPC_defn
deduction/PPC_natDeduct.lean
inductive PPC_form : Type
| top : PPC_form
| var : ℕ → PPC_form
| and : PPC_form → PPC_form → PPC_form
| impl : PPC_form → PPC_form → PPC_form
deduction/PPC_natDeduct.lean
@[reducible] def Hyp : Type := set(PPC_form)
instance : has_union PPC_Hyp := infer_instance
instance : has_mem PPC_Form PPC_Hyp := infer_instance
instance : has_insert PPC_Form PPC_Hyp := infer_instance
instance : has_emptyc PPC_Hyp := infer_instance
PPC_derives
deduction/PPC_natDeduct.lean
inductive PPC_derives : PPC_Hyp → PPC_Form → Prop
| hyp {Φ : PPC_Hyp} {φ : PPC_Form}
: (φ ∈ Φ) → PPC_derives Φ φ
| truth {Φ}
: PPC_derives Φ PPC_Form.top
| and_intro {Φ} {φ ψ : PPC_Form}
: PPC_derives Φ φ → PPC_derives Φ ψ → PPC_derives Φ (PPC_Form.and φ ψ)
| and_eliml {Φ} {φ ψ : PPC_Form}
: PPC_derives Φ (PPC_Form.and φ ψ) → PPC_derives Φ φ
| and_elimr {Φ} {φ ψ : PPC_Form}
: PPC_derives Φ (PPC_Form.and φ ψ) → PPC_derives Φ ψ
| impl_intro {Φ : PPC_Hyp} (φ : PPC_Form) {ψ : PPC_Form}
: PPC_derives (insert φ Φ) ψ → PPC_derives Φ (PPC_Form.impl φ ψ)
| impl_elim {Φ : PPC_Hyp} (φ : PPC_Form) {ψ : PPC_Form}
: PPC_derives Φ (PPC_Form.impl φ ψ) → PPC_derives Φ φ → PPC_derives Φ ψ
| weak {Φ Ψ : PPC_Hyp} {φ : PPC_Form}
: PPC_derives Φ φ → PPC_derives (Φ ∪ Ψ) φ
open PPC_derives
PPC is an instance of has_struct_derives
Hypotheses
deduction/PPC_natDeduct.lean
instance PPC_hasHyp : has_Hyp PPC_Form :=
{ Hyp := PPC_Hyp }
instance PPC_singleton : has_singleton PPC_Form PPC_Hyp :=
deduction_basic.singleHyp
deduction/PPC_natDeduct.lean
@[simp]
lemma same_singles : ∀ φ : PPC_Form,
PPC_has_derives.PPC_singleton.singleton φ = set.has_singleton.singleton φ :=
begin
assume φ,
dsimp[PPC_has_derives.PPC_singleton,deduction_basic.singleHyp],
rw set.is_lawful_singleton.insert_emptyc_eq,
end
lemma single_union {Φ : PPC_Hyp} {φ : PPC_Form}
: insert φ Φ = {φ} ∪ Φ := by simp
Instance declaration
deduction/PPC_natDeduct.lean
instance PPC_Der : has_struct_derives PPC_Form :=
{
derives := PPC_derives,
derive_Trans :=
begin
assume Φ ψ θ hφψ hψθ,
have helper : PPC_derives Φ (PPC_Form.impl ψ θ),
apply impl_intro,
rw single_union,
apply weak,
exact hψθ,
apply impl_elim ψ,
exact helper,
exact hφψ,
end,
inInsert := set.mem_insert,
hyp := @hyp,
weak1 :=
begin
assume Φ φ ψ h,
rw single_union,
rw set.union_comm,
apply weak,
exact h,
end,
}
Cartesian Structure
deduction/PPC_natDeduct.lean
instance PPC_top : deduction_cart.has_ltop PPC_Form :=
{
top := PPC_Form.top,
truth := @truth,
}
instance PPC_and : deduction_cart.has_and PPC_Form :=
{
and := PPC_Form.and,
and_intro := @and_intro,
and_eliml := @and_eliml,
and_elimr := @and_elimr,
}
instance PPC_impl : deduction_cart.has_impl PPC_Form :=
{
impl := PPC_Form.impl,
impl_intro := @impl_intro,
impl_elim := @impl_elim,
}