Cartesian Connectives
Typeclasses
Top
mathlib: order/bounded_order.lean
@[notation_class] class has_top (α : Type u) := (top : α)
notation `⊤` := has_top.top
deduction/deduction_cartesian.lean
class has_ltop (Form : Type) extends has_struct_derives Form :=
(top : Form)
(truth : ∀ {Φ : Hyp}, derives Φ top)
instance {Form : Type} [Der : has_ltop Form] : has_top Form := ⟨ Der.top ⟩
Logical And
deduction/deduction_cartesian.lean
class has_and (Form : Type) extends has_ltop Form :=
(and : Form → Form → Form)
(and_intro {Φ} {φ ψ : Form}
: derives Φ φ → derives Φ ψ → derives Φ (and φ ψ))
(and_eliml {Φ} {φ ψ : Form}
: derives Φ (and φ ψ) → derives Φ φ)
(and_elimr {Φ} {φ ψ : Form}
: derives Φ (and φ ψ) → derives Φ ψ)
infix `&`:79 := has_and.and
Implication
deduction/deduction_cartesian.lean
class has_impl (Form : Type) extends has_and Form :=
(impl : Form → Form → Form)
(impl_intro {Φ} (φ) {ψ}
: derives (insert φ Φ) ψ → derives Φ (impl φ ψ))
(impl_elim {Φ} (φ) {ψ}
: derives Φ (impl φ ψ) → derives Φ φ → derives Φ ψ)
notation (name:= has_impl.impl) φ ` ⊃ `:80 ψ := has_impl.impl φ ψ
Lemmas
&
internalizes two-formula hypotheses
deduction/deduction_cartesian.lean
lemma and_intro1 {Form : Type} [Der : has_and Form] {φ ψ : Form} :
Der.derives (Der.insertHyp.insert ψ {φ}) (φ&ψ) :=
begin
apply Der.and_intro,
apply Der.weak1,
apply derive_refl,
apply Der.hyp,
apply Der.inInsert,
end
deduction/deduction_cartesian.lean
lemma and_internal {Form : Type} [Der : has_and Form] {φ ψ θ: Form} :
(φ & ψ ⊢ θ) → Der.derives (Der.insertHyp.insert ψ {φ}) θ :=
begin
assume h,
apply Der.derive_Trans (φ & ψ),
exact and_intro1,
exact h,
end
One-formula &
-elimination
deduction/deduction_cartesian.lean
lemma and_eliml1 {Form : Type} [Der : has_and Form] {φ ψ : Form} :
φ & ψ ⊢ φ :=
begin
apply Der.and_eliml,
apply derive_refl,
end
lemma and_elimr1 {Form : Type} [Der : has_and Form] {φ ψ : Form} :
φ & ψ ⊢ ψ :=
begin
apply Der.and_elimr,
apply derive_refl,
end
Implication is exponentiation
deduction/deduction_cartesian.lean
lemma modus_ponens {Form : Type} [Der : has_impl Form] :
∀ {φ ψ : Form}, (φ ⊃ ψ) & φ ⊢ ψ :=
begin
assume φ ψ,
apply Der.impl_elim φ,
apply and_eliml1,
apply and_elimr1,
end
deduction/deduction_cartesian.lean
lemma impl_ε {Form : Type} [Der : has_impl Form] :
∀ {φ ψ θ : Form}, φ & ψ ⊢ θ → φ ⊢ ψ ⊃ θ :=
begin
assume φ ψ θ h,
apply Der.impl_intro,
apply Der.derive_Trans,
apply and_intro1,
exact h,
end
Weakening by a hypothesis
deduction/deduction_cartesian.lean
lemma insert_trans {Form : Type} [Der : has_impl Form] {Φ} {φ ψ : Form} :
(φ ⊢ ψ) → Der.derives (Der.insertHyp.insert φ Φ) ψ :=
begin
assume h,
apply Der.derive_Trans φ,
apply Der.hyp,
apply Der.inInsert,
exact h,
end