Thin Categories
categoryTheory/thin.lean
class thin_cat (C : Type) extends category C :=
(K : ∀ (X Y : C) (f g : X ⟶ Y), f = g)
categoryTheory/thin.lean
def preorder_cat_full {C : Type} [C_struct : preorder C] {X Y : C} (F : X ⟶ Y)
: ∃ p : X ≤ Y, F = hom_of_le p :=
⟨ le_of_hom F, by { symmetry, apply hom_of_le_le_of_hom} ⟩
def from_preorder {P : Type} (P_struct : preorder P) : thin_cat P :=
⟨
begin
assume X Y F G,
cases (preorder_cat_full F) with p pF,
cases (preorder_cat_full G) with q qG,
rewrite pF, rewrite qG,
end
⟩
by_thin
Tactic
categoryTheory/thin.lean
meta def by_thin : tactic unit :=
`[ repeat{assume _}, repeat{ repeat{ apply funext, assume _},apply thin_cat.K }]